
CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

1 of 10 02/07/2008 10:43 AM

Simulating Verilog Tutorial
ModelSim Tutorial

Last Updated: February 3, 2008
Derived from Hill/Hower tutorial

Table of Contents

Introduction1.
Creating a New Project2.
Adding Verilog Files3.
Compiling a Project4.
Simulating a Design5.
Using Command Line Functions6.
Do Files7.
Advanced Scripting Features8.

1. Introduction

This tutorial covers Mentor Graphic's ModelSim SE©, an Integrated Development
Environment (IDE) for HDL circuit design. In CS 552 we will use ModelSim to develop and
simulate circuit designs written in Verilog. Before using ModelSim for your own designs be
sure to review the Verilog style rules that apply to work done for the CS 552 project and
homework, found in the handouts section of the course web page.

This document will provide a only brief introduction to the tools necessary to complete
coursework in CS 552. Those looking for more detailed coverage can consult the ModelSim
SE tutorial published by Mentor found here. Additionally, the help menu in ModelSim has a
large volume of documentation covering the features of the IDE.

You will learn best from this tutorial by following along on your own machine. ModelSim can
be accessed through any of the CS UNIX/Linux machines or through an SSH connection to a
CS workstation. Be aware, however, that due to the size of ModelSim a remote connection
through SSH may be too slow for your liking.

2. Creating a New Project

For historical reasons, the ModelSim IDE runs under the UNIX program name vsim. To
begin a new project, navigate to the directory where you want your project to be located and
type vsim at the terminal command prompt. You may close the welcome screen if it
appears after opening the program. You should now see the screen shown in Figure 1. On
the left is the Workspace window and on the right is the ModelSim command prompt.

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

2 of 10 02/07/2008 10:43 AM

Figure 1 - ModelSim main window

To open a new project, choose File -> New -> Project. Enter tutorial as the project name
and cs552_tutorial as the default library name. If a dialog box opens and asks you which
version of the modelsim.ini file you would like to use, choose Use Default ini.

2. Adding Verilog Files

You can add files to an open project by selecting File -> Add to Project -> New File. In
the dialog box that appears, enter mux2_1 under "File Name". The "Add File as Type"
selection box should be set to Verilog and "Folder" should be Top Level. After clicking OK,
the newly created file will appear in the workspace project tab. Double click the file name to
begin editing the file. Type the code below in the ModelSim edit window then select File ->
Save.

// a 2-1 multiplexer module
module mux2_1(i0, i1, sel, out);
 input i0;
 input i1;
 input sel;
 output out;
 reg outreg;

 always @* case (sel)
 2'b0 : outreg = i0;
 2'b1 : outreg = i1;
 endcase

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

3 of 10 02/07/2008 10:43 AM

 assign out = outreg;

endmodule

Sub modules will automatically work in ModelSim as long as all the needed files are included
in the current project. To exemplify this, use the module you just created to construct a 4-1
multiplexer. Choose File -> Add to Project -> New File and create a verilog file named
mux4_1. Open the new file for editing and copy and paste in the code shown below.

//a 4-1 multiplexer module
module mux4_1(i0, i1, i2, i3, Sel, out);
 input i0;
 input i1;
 input i2;
 input i3;
 input [1:0] Sel;
 output out;
 wire s0, s1;
 //use mux2_1 as a submodule
 mux2_1 submod1(i0, i1, Sel[0], s0);
 mux2_1 submod2(i2, i3, sel[0], s1);
 mux2_1 submod3(s0, s1, Sel[1], out);

endmodule

3. Compiling a Project

To compile your newly created files, find the Compile All button found in the ModelSim
toolbar located to the right of the paste icon. You could alternatively choose to compile each
file individually by highlighting the file in the workspace and clicking the Compile button.
The result of the compilation is shown in the right frame of the ModelSim main window. If
you copied the code for mux4_1 exactly, you will see a compilation failure shown in red, as
seen in Figure 2. To view the error, double click the red line. The window that appears
explains that line 13 of the file mux4_1.v has an illegal variable. Double click the error to
jump directly to the erroneous line in the ModelSim editor. A quick look at the code reveals
that the Sel variable was not capitalized. Fix the error, save the file, and compile again.

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

4 of 10 02/07/2008 10:43 AM

Figure 2 - Viewing a Compilation Error

4. Simulating a Design

To simulate a design you must first locate your working library. Navigate to the Library tab
in the Workspace window. There you will find the library you just created named
"cs552_tutorial". Expand this row to find your design files. Select the top-most design in
your project, in this case mux4_1, right click over the name, and choose Simulate.

This will create two new tabs in the Workspace window named sim and Files. The sim tab will
contain a hierarchy of modules used in the current simulation, and the Files tab lists the
source files used. Open the sim tab, right click on the mux4_1 module, and select Add to
Wave. This will open a new "wave" window with the mux4_1 signals already included. You
will notice that the internal wires s0 and s1 are present as well. In larger designs it is useful
to examine these signals during debugging.

Choose a signal in the wave window and right click to view the options. The Radix option
allows you to change the display format of the signal. This is useful for displaying buses in
hexadecimal format instead of binary. However, because the mux4_1 module has only single
wire inputs we will leave all signals in the default binary format.

Now you will add forces to the input signals so that you can test the multiplexer's function.
In the ModelSim main window, choose View -> Signals. This will open a new window that
contains a list of all the signals in the current simulation. Highlight the signal i0 and then
select Edit -> Force. You should see the screen shown in Figure 3. Set the value of the
signal by entering either a 1 or 0 in the Value field and then select the Freeze option in the
Kind area. Repeat this step for all the input signals i0-i3 and Sel. When forcing Sel, be sure
to enter a two digit binary number.

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

5 of 10 02/07/2008 10:43 AM

Figure 3 - Forcing signals in ModelSim

After forcing all the input signals, the design is ready for simulation. Navigate back to the
waveform window and find the button labeled Run. Clicking this will run the simulation for
the default time of 100ns. Clicking the Run button again will run the simulation from the
previous stopping point, NOT from time 0. You can test a different set of inputs by switching
to the signals window, applying new forces, and running the simulation again.

Clicking in the waveform window will bring up a cursor, which you will see as a vertical
yellow line. You can drag the cursor along the simulation timeline to examine signal values.
By using the Find next transition and Find previous transition buttons, you can also
advance the cursor automatically to the next value change for a selected signal. ModelSim
makes it easy to compare the value of a signal at different times by using two cursors. Find
the Add Cursor button in the wave window toolbar. Clicking it will add another cursor to the
design as shown in Figure 4.

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

6 of 10 02/07/2008 10:43 AM

Figure 4 - Using multiple cursors

To end the current simulation, close both the wave and signal windows and navigate back to
the sim tab of the main window's Workspace frame. Right click on the top level module that
you are simulating, in this case mux4_1, and select end simulation.

4. Using Command Line Functions

When simulating large designs, it is often too cumbersome to manually force a signal using
the graphic interface each time you want it to change. ModelSim remedies this by providing
a long list of simulator commands. The complete list can be found in the ModelSim help
documentation, but for purposes of this tutorial we will cover some of the most commonly
used commands.

You will now recreate the simulation you performed in the previous section using only
command line functions. First, you must initiate the simulation. This is done using the vsim
<library_name>.<design_unit> command (not to be confused with the vsim
command that starts ModelSim from the UNIX command prompt). To start a simulation of
the 4-1 multiplexer, type the following in the ModelSim command window.

vsim cs552_tutorial.mux4_1.

If you do not specify a library name, ModelSim will look for the design in the "work" library.

The next step is to add signals to the waveform. This is accomplished with the add wave
<signal> command. The signal argument can take the form of a UNIX wildcard string, i.e.
i*, which would include the signals i0, i1, etc... With the add wave command you can also
pass optional arguments to format the display. Common options are -color, -<radix>,
and -<format>. See the ModelSim help documentation for their specific usage and more
options. For your simulation, add all the signals with the command:

add wave *

After signals have been added to the wave file, you must next force them to run a
meaningful simulation. In ModelSim the force <signal> <value> <start time>

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

7 of 10 02/07/2008 10:43 AM

command performs this task. You can specify the type of force using the options -freeze,
-drive, or -deposit. If no option is used, ModelSim defaults to the freeze type. The
force command can also be used to create clock signals using the -repeat option.
Consult the ModelSim command reference, found in the help section, for examples of clock
forces. To continue with your simulation, type the following:

force i0 0 0
force i1 1 0
force i2 1 0
force i3 0 0

force Sel 00 0
force Sel 01 50
force Sel 10 100
force Sel 11 150

The compliment command of force is noforce <signal> <stop time>.

Now all that is left to do is to run and view the simulation. You can run the simulation using
the run <time> command.

run 200

To see the results of the simulation, open the wave window by typing

view wave

5. Do Files

ModelSim allows you to automate sequences of commands using DO files. The files are
simple in structure, containing only comments starting with a # and a sequential list of
commands. To create a new DO file, navigate to the ModelSim main window and choose File
-> New -> Source -> Do. This will open the editor window with a blank document. Type
the following in the editor and then save the file as "tutorial.do".

reset the simulation
restart -force -nowave

add all input and output signals to the wave file
add wave -logic i0
add wave -logic i1
add wave -logic i2
add wave -logic i3
add wave -logic Sel
add wave -logic out

force the input signals
force -freeze i0 0 0
force -freeze i1 1 0
force -freeze i2 1 0
force -freeze i3 0 0

force -freeze Sel 00 0
force -freeze Sel 01 50
force -freeze Sel 10 100
force -freeze Sel 11 150

run the full simulation
run 200

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

8 of 10 02/07/2008 10:43 AM

open the wave window
view wave

To execute the DO file, type the following in the ModelSim command prompt:

do tutorial.do

6. Advanced Scripting Features

One of the most powerful features of ModelSim is it's tight integration with the Tcl/Tk
(commonly pronounced "tickle"/"tee-kay") scripting language. Tcl and its graphical extension
Tk are interpreted languages similar to python or perl. The Tcl syntax makes heavy use of
curly braces and list data types and does not closely resemble any of the common languages
such as C or Java. Nevertheless, it is simple enough that meaningful scripts can be created
in a short amount of time by learning a few simple rules. While using Tk to graphically
represent simulations can be a useful tool, it is beyond the scope of this document. To learn
more about Tk scripting in ModelSim, consult the ModelSim SE tutorial found in the
program's help documentation.

The real advantage to Tcl scripting in ModelSim is the ability to control the flow of a
simulation as you would a sequential program. You can create loops to iterate through a
series of forces or format the simulation output to fit your needs. For example, in your 4-1
multiplexer simulation, you can easily iterate through all possible input combinations with a
single loop:

set the simulation step size as a global variable
step is used by both runSim and verifySim listed below
set step 10

proc runSim {} {
 # a count of the elapsed runtime
 set runtime 0
 # import the global variable step
 global step

 restart -force -nowave
 add wave *

 # apply all 64 (2^6) possible inputs to the design
 for {set i 0} {$i < 64} {incr i} {
 # force signals based on a mask of the integer i
 force -freeze i0 [expr $i & 0x01] $runtime
 force -freeze i1 [expr $i & 0x02 >> 1] $runtime
 force -freeze i2 [expr $i & 0x04 >> 2] $runtime
 force -freeze i3 [expr $i & 0x08 >> 3] $runtime
 force -freeze Sel [expr $i & 0x20 >> 5][expr $i & 0x10 >> 4]
$runtime

 # increment the elapsed runtime
 set runtime [expr $runtime + $step]
 }

 # run the full simulation
 run $runtime

 # after the simulation is complete, view the results
 view wave
}

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

9 of 10 02/07/2008 10:43 AM

Notice that ModelSim commands can be mixed with Tcl syntax to easily control a simulation.
To use a Tcl script, add a new file to your project by selecting File -> New -> Source ->
Other. Copy the script above to the file and then save it as tutorial.tcl. In the ModelSim
command window, type source tutorial.tcl. This command makes all procedures in
your Tcl script callable from the ModelSim command window. Run the exhaustive simulation
by typing runSim. When the script is finished the wave window will appear as shown in
Figure 5.

Figure 5 - Result of Tcl Script Call

You can use Tcl scripts to automate design testing. Through the use of the ModelSim
examine command, a Tcl script can import a signal value as a script variable. This enables
you to create automatic checks for your test cases. Consider the following function, which,
when used in conjunction with the runSim procedure above, will verify the results of the
exhaustive 4-1 multiplexer simulation.

when used in conjunction with runSim,
this script will verify that the output of the 4-1 mux is
correct.
proc verifySim {} {

 # import the global variable step
 global step
 # keep a count of the elapsed runtime
 set runtime 5
 # set a boolean variable to track if an error was found
 set errorFound 0

 # just as in runSim, apply all 64 (2^6) possible inputs to the
design
 for {set i 0} {$i < 64} {incr i} {
 set i0 [expr ($i & 0x01)]
 set i1 [expr ($i & 0x02) >> 1]
 set i2 [expr ($i & 0x04) >> 2]
 set i3 [expr ($i & 0x08) >> 3]

CS/ECE 552 Spring 2008: ModelSim Tutorial http://pages.cs.wisc.edu/~karu/courses/cs552/spring2008/handouts/mode...

10 of 10 02/07/2008 10:43 AM

 set Sel0 [expr ($i & 0x10) >> 4]
 set Sel1 [expr ($i & 0x20) >> 5]

 # use the 4-1 mux logic equation to determine the correct
output
 set correctOut [expr (!$Sel0 & !$Sel1 & $i0) | \
 ($Sel0 & !$Sel1 & $i1) | \
 (!$Sel0 & $Sel1 & $i2) | \
 ($Sel0 & $Sel1 & $i3)]
 # retrieve the actual simulation output using the examine
command
 set simOut [examine -time $runtime -binary /mux4_1/out]

 # compare the expected output with the actual output
 if {$correctOut != $simOut} {
 echo "discrepancy found"
 echo "correctOut:$correctOut"
 echo "simOut:$simOut"
 echo "time:$runtime"
 set errorFound 1
 }

 # increment the runtime value by step
 set runtime [expr $runtime + $step]
 }

 if {$errorFound == 0} {
 echo "design verified successfully"
 } else {
 echo "errors were found in the design"
 }
}

To use the verification function, copy the code above into the end of the tutorial.tcl
script file. After saving, retype source tutorial.tcl in the ModelSim command
window. You can then verify your design by typing runSim followed by verifySim.

