
CS/ECE 552, Fall 2020 1

Verilog
For Computer Design

CS/ECE 552, Fall 2020
Guanzhou Hu

Based on slides from
Prof. Karu Sankaralingam (UW-Madison),

Derek Hower (UW-Madison), Andy Phelphs (UW-Madison) and
Prof. Milo Martin (University of Pennsylvania)

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 2

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 3

Why Verilog and Why Not Manual Design?
State of The Art Design

Do you want to design this Processor manually?

CS/ECE 552, Fall 2020 5

Hardware Description Languages (HDLs)

• Textual representation of a digital logic design

• HDLs are NOT “programming languages”
• A procedural programming lang defines a sequence of events for

the processor to execute one-by-one
• An HDL describes what a chip looks like: what are the components

and how they are wired together
• For many people, a difficult conceptual leap

• Similar development chain
• Compiler: source code → assembly code → binary machine code
• Synthesis tool: HDL source → gate-level specification → hardware

CS/ECE 552, Fall 2020 6

Why an HDL is not a Programming Language

• In a software program, we start at the beginning (e.g.
“main”), and we proceed sequentially through the code as
directed

• The program represents an algorithm, a step-by-step
sequence of actions to solve some problem

for (i = 0; i < 10; i++) {
if (newPattern == oldPattern[i])

match[i] = true;
}

CS/ECE 552, Fall 2020 7

Why an HDL is not a Programming Language
• Hardware is all active at once; there is no starting point
• It is a static layout of logic circuits

CS/ECE 552, Fall 2020 8

Starting With an Example…
module fulladd (input A, B, Cin,

output sum, Cout);

assign sum = A ^ B ^ Cin;
assign Cout = (A & B)| (A & Cin)| (B & Cin);

endmodule

Cin

A

B

Sum

Cout
1 bit Full
Adder

Synthesis

CS/ECE 552, Fall 2020 9

HDL Coding Constructs
• Structural constructs specify actual hardware structures

• Low-level, direct correspondence to hardware
• Primitive gates (e.g., and, or, not)
• Hierarchical structures via modules

• RTL/Dataflow constructs specify an operation on bits
• High-level, more abstract

• Specified via equations, e.g., out = (a & b) | c
• Behavioral – Describes behavior of the circuit

• Always, initial blocks, procedural assignments
• Not all behavioral constructs are synthesizable

• Even some combinational logic won’t synthesize well
• out = a % b // modulo op – what does this synthesize to?

10

Structural Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

wire N1, N2, N3;

and A0 (N1, V1, V2),
A1 (N2, V2, V3),
A2 (N3, V3, V1);

or Or0 (major, N1, N2, N3);

endmodule

V1
V2

V2
V3

V3
V1

major

N1

N2

N3

A0

A1

A2

Or0

majority

11

RTL/Dataflow Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

assign major = V1 & V2
| V2 & V3
| V1 & V3;

endmodule

V1
V2
V3

majormajority

Continuous Assignment Statement

12

Behavioral Example

module majority (major, V1, V2, V3) ;

output reg major ;
input V1, V2, V3 ;

always @(V1, V2, V3) begin
if (V1 && V2 || V2 && V3
|| V1 && V3) major = 1;

else major = 0;
end

endmodule

V1
V2
V3

majormajority

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 13

CS/ECE 552, Fall 2020 14

Recall: Two Types of Digital Circuits
• Combinational Logic

• Logic without state variables
• Examples: adders, multiplexers, decoders, encoders
• No clock involved
• Not edge-triggered
• All “inputs” are triggers

• Sequential Logic (details explained later)
• Logic with state variables
• State variables: registers (latches, flip-flops), memory
• Clocked - Edge-triggered by clock signal
• State machines, multi-cycle arithmetic, processors
• Only clock (and possibly reset) appear in trigger list
• Can include combinational logic that feeds the register

1/24/2006 15

Number Representation

Examples:
6’b010_111 gives 010111
8’b0110 gives 00000110
8’b1110 gives 00001110
4’bx01 gives xx01
16’H3AB gives 0000001110101011
24 gives 0…0011000
5’O36 gives 11100
16’Hx gives xxxxxxxxxxxxxxxx
8’hz gives zzzzzzzz

Format: <size><base_format><number>

1/24/2006 16

Compose Wider Signal using Brackets

Examples:
{4’hA, 4{1’b1}} gives 8’b10101111
{Old[6:0], InA} gives a 8-bit wire New like:

Old InA
7 0

New

1/24/2006 17

Module Definition

• In all HWs and projects, only allowed to use a very basic set
of Verilog (see Verilog rules of this course)

• In HW1, we will provide basic modules such as the NOT
gate above; Instantiate them to construct your modules

module not1 (in1, out);
input in1;
output out;

assign out = ~in1;
endmodule

http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/wiki/index.php/Main/VerilogRules

CS/ECE 552, Fall 2020 18

Module Instantiation: Hierarchical Design

• Build up more complex modules using simpler modules
• The idea of Abstraction!

• Rule: MUST use explicit port name mapping
• Example: 2-bit wide NOT gate from two 1-bit gates

module not1_2 (In, Out);
input [1:0] In;
output [1:0] Out;

not1 n0 (.in1(In[0]), .out(Out[0]));
not1 n1 (.in1(In[1]), .out(Out[1]));

endmodule

CS/ECE 552, Fall 2020 19

Verilog “wire”

module mux2to1 (
input S, A, B,
output Out);

wire S_, AnS_, BnS;

not (.in1(S), .out(S_));
and (.in1(S_), .in2(A), .out(AnS_));
and (.in1(S), .in2(B), .out(BnS));
or (.in1(AnS_), .in2(BnS), .out(Out));

endmodule

S

O
B

A
S_

AnS_

BnS

• Give names to internal wires in your layout

CS/ECE 552, Fall 2020 20

Wire Assignment

• Wire assignment: “continuous assignment”
• Order of statements not important to Verilog, executed

totally in parallel, describes the same hardware

• But order of statements can be important to clarity of thought!

• When right-hand-side changes, it immediately flows through to left
• Designated by the keyword assign

wire [3:0] c;
assign c = a | b;
wire [3:0] c = a | b; // same thing

CS/ECE 552, Fall 2020 21

Verilog “reg”

reg result;
always @ (s or A or B) begin

case(s)
1’b1: result = A;
1’b0: result = B;
default: result = 1’bx;

endcase
end

• Think of a reg variable as a register on a wire

A

B

s

result

When to Use wire and When reg!
§ Wire

ü Module declaration: Inputs(Yes), Outputs (Yes)
ü Module instantiation: Connect input and output ports
ü Must be driven by something, cannot store values
ü Only legal type on left side of an assign statement
ü Not allowed on left side of = or <= in an always@ block
ü Most of the times combinational logic

§ Reg
ü Module instantiation: Input port (Yes) , Output Port (No)
ü Module declaration: Inputs(No), Outputs (Yes)
ü Only legal type on left side of = or <= in an always@ block
ü Only legal type on left side of initial block (test bench)
ü Not Allowed on left side of an assign statement
ü Used for both sequential and combinational logic

CS/ECE 552, Fall 2020

CS/ECE 552, Fall 2020 23

Operators
• On wires:

• & (and), | (or), ~ (not), ^ (xor)

• On vectors:
• &, |, ~, ^ (bit-wise operation on all wires in vector)

• E.g., assign vec1 = vec2 & vec3;
• &, |, ^ (reduction on the vector)

• E.g., assign wire1 = | vec1;
• ==, != (equality); ===, !== (identity)
• M << const, M >> const (shift by const bits)

• Can be arbitrarily nested

CS/ECE 552, Fall 2020 24

Conditional Operator
• Verilog supports the ? : ternary operator

Examples:
assign out = S ? B : A;

assign out = sel == 2'b00 ? a :
sel == 2'b01 ? b :
sel == 2'b10 ? c :
sel == 2'b11 ? d : 1'b0;

What do these do?

Parameters
• Parameters

module mux2to1_N(Sel, A, B, O);
parameter N = 1
input [N-1:0] A;
…

mux2to1_N #(4) mux1 (…

CS/ECE 552, Fall 2020 25

CS/ECE 552, Fall 2020 26

Verilog Pre-processor
• Using macros

• Constants: `define
`define letter_A 8’h41
wire w = `letter_A;

• File inclusion: `include

• Rule: define all constants in module_name_config.v and
include this file in your module

CS/ECE 552, Fall 2020 27

Non-binary Hardware Values
• A hardware signal can have four values

0, 1
X: don’t know, don’t care
Z: high-impedance (no current flowing)

• Two meanings of “x”
• Simulator indicating an unknown state
• Or: You telling synthesis tool you don’t care

• Synthesis tool makes the most convenient circuit (fast, small)
• Use with care, leads to synthesis dependent operation

• Uses for “z”
• Tri-state devices drive a zero, one, or nothing (z)
• Many tri-states drive the same wire, all but one must be “z”

• Example: multiplexer

CS/ECE 552, Fall 2020 28

Case Statements

case (<expr>)
<match-constant1>: <stmt>
<match-constant2>: begin

<stmt>
end

<match-constant3>,<match-constant4>: <stmt>
default: <stmt>

endcase

• Also have casez / casex for wildcards

CS/ECE 552, Fall 2020 29

Case Statements
• Useful to make big muxes

• Very useful for “next-state” logic
• BUT they are easy to abuse

• If you don’t set a value, it retains its previous state
• Which is a latch!

• We will allow case statements, but with some severe
restrictions:
• Every value is set in every case
• Every possible combination of select inputs must be covered
• MUST have default case
• Each case lives in its own “always” block, sensitive to changes in

all of its input signals
• This is our ONLY use of “always” and “reg”

CS/ECE 552, Fall 2020 30

System Tasks
• Start with $

• For output:
$display
$fdisplay
$monitor
$dumpvars

• Internal Clock: $time
• Finish simulation: $finish
• Pause for debugging: $stop
• Direct manipulation of memory:

$readmemh
$writememh

1/24/2006 31

Everything about Verilog for this Course

1. Only allowed to use a very basic set of Verilog; see Verilog
rules

2. Verilog cheatsheet by Karu as a quick reference of syntax;
also includes the rules in it

3. Additional filename convention rules: Exactly one module
per file, file named module_name.v

Ask TA or Professor if you are experiencing any difficulty in
following these guidelines. We are glad to help!

http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/wiki/index.php/Main/VerilogRules
http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/handouts/misc/Verilog_cheat.pdf

Overview
• Why Verilog?

High-level Description of Verilog
• Verilog Syntax

• Primitives
• Number Representation
• Modules and Instances
• Wire and Reg Variables
• Operators
• Miscellaneous

• Sequential Logic
• Testbench Structure
• Case Study, Verilog Tools and Demo

CS/ECE 552, Fall 2020 32

CS/ECE 552, Fall 2020 33

Sequential Logic in Verilog
• Use the dff module (1-bit FF) provided to create

wider FFs, then use them as state registers
• NO direct use of Verilog “reg”

1-bit
D

Flip
flop

d q

clk

rst

CS/ECE 552, Fall 2020 34

Example: State Machine

• State Register is your n-bit FF built from dff
• Separating combinational logic from sequential state

elements is a good design practice

Combinational
Logic

State
Register

Outputs

Next State

Current
State

Clock Inputs

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 35

Testbench – For Simple Homework

Design

Stimulus

Outputs

And “visually” inspect the outputs…

Design

Stimulus

Outputs

Expected
Outputs

Pass / Fail

Visual inspection not
required!

Testbench – w/ Expected Outputs

Design

Inputs

Functional
model

simulation
using

software
languages

(eg. C)

Pass / Fail

Testbench – For Course Projects

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 39

Demo Walkthrough of HW Problem

Check the pinned Piazza note:
https://canvas.wisc.edu/courses/205192/external_tools/65

• I will show you a pure command-line walkthrough now
• For graphical ModelSim dev/debugging, you may connect

to a CSL machine or use a local installation
• Just be sure to put the finished work onto a CSL

machine and run a final check before submission

CS/ECE 552, Fall 2020 40

https://canvas.wisc.edu/courses/205192/external_tools/65

